
D e p t o f C S E , M B I T S Page 1

DISK SCHEDULING

 For magnetic disks, the access time has two major

components. The seek time is the time for the disk arm to

move the heads to the cylinder containing the desired

sector. The rotational latency is the additional time for the

disk to rotate the desired sector to the disk head.

 The disk bandwidth is the total number of bytes

transferred, divided by the total time between the first

request for service and the completion of the last transfer.

 We can improve both the access time and the bandwidth by

managing the order in which disk I/O requests are serviced.

 If the desired disk drive and controller are available, the

request can be serviced immediately. If the drive or

controller is busy, any new requests for service will be

placed in the queue of pending requests for that drive.

 For a multiprogramming system with many processes, the

disk queue may often have several pending requests. Thus,

when one request is completed, OS chooses which pending

request to service next.

 several disk-scheduling algorithms can be used

1. FCFS Scheduling

2. SSTF Scheduling

3. SCAN Scheduling

4. C-SCAN Scheduling

5. LOOK Scheduling

6. C-LOOK scheduling

D e p t o f C S E , M B I T S Page 2

FCFS Scheduling

 The simplest form of disk scheduling is, of course, the first-

come, first-served (FCFS) algorithm. This algorithm is

intrinsically fair, but it generally does not provide the fastest

service.

 Consider, for example, a disk queue with requests for I/O to

blocks on cylinders 98, 183, 37, 122, 14, 124, 65, 67 in that

order. If the disk head is initially at cylinder 53, then FCFS

works as below

 It will first move from 53 to 98, then to 183, 37, 122, 14, 124,

65, and finally to 67

D e p t o f C S E , M B I T S Page 3

 Total head movement can be calculated as follows:

(98-53) + (183-98) + (183-37) + (122-37) + (122-14) + (124-

14) + (124-65) + (67-65) = 640 cylinders.

 The wild swing from 122 to 14 and then back to 124

illustrates the problem with this schedule. If the requests for

cylinders 37 and 14 could be serviced together, before or

after the requests for 122 and 124, the total head movement

could be decreased substantially, and performance could be

thereby improved.

SSTF Scheduling

 It seems reasonable to service all the requests close to the

current head position before moving the head far away to

service other requests.

 This assumption is the basis for the shortest-seek-time-

first (SSTF) algorithm.

 The SSTF algorithm selects the request with the least seek

time from the current head position.

 In other words, SSTF chooses the pending request closest

to the current head position.

D e p t o f C S E , M B I T S Page 4

 For our example request queue, the closest request to the

initial head position (53) is at cylinder 65. Once we are at

cylinder 65, the next closest request is at cylinder 67. From

there, the request at cylinder 37 is closer than the one at 98,

so 37 is served next. Continuing, we service the request at

cylinder 14, then 98, 122, 124, and finally 183.

 Total head moves can be calculated as follows:

(65-53) + (67-65) + (67-37) + (37-14) + (98-14) + (122-98) +

(124-122) + (183-124) = 236 cylinders

 Clearly, this algorithm gives a substantial improvement in

performance.

D e p t o f C S E , M B I T S Page 5

 SSTF scheduling is essentially a form of shortest-job-first

(SJF) scheduling; and like SJF scheduling, it may cause

starvation of some requests.

 Remember that requests may arrive at any time. Suppose that

we have two requests in the queue, for cylinders 14 and 186,

and while the request from 14 is being serviced, a new

request near 14 arrives. This new request will be serviced

next, making the request at 186 wait.

 While this request is being serviced, another request close to

14 could arrive. In theory, a continual stream of requests near

one another could cause the request for cylinder 186 to wait

indefinitely. This scenario becomes increasingly likely as the

pending-request queue grows longer.

 Although the SSTF algorithm is a substantial improvement

over the FCFS algorithm, it is not optimal. In the example,

we can do better by moving the head from 53 to 37, even

though the latter is not closest, and then to 14, before turning

around to service 65, 67, 98, 122, 124, and 183. This strategy

would again reduce the total head movement

SCAN Scheduling

 In the SCAN algorithm, the disk arm starts at one end of

the disk and moves toward the other end, servicing

requests as it reaches each cylinder, until it gets to the other

end of the disk.

D e p t o f C S E , M B I T S Page 6

 At the other end, the direction of head movement is

reversed, and servicing continues.

 The head continuously scans back and forth across the

disk.

 The SCAN algorithm is sometimes called the elevator

algorithm, since the disk arm behaves just like an elevator

in a building, first servicing all the requests going up and

then reversing to service requests the other way.

 Consider our example. Before applying SCAN, we need to

know the direction of head movement in addition to the

head’s current position.

 Assuming that the disk arm is moving toward 0 and that

the initial head position is again 53, the head will next

service 37 and then 14.

 At cylinder 0, the arm will reverse and will move toward

the other end of the disk, servicing the requests at 65, 67,

98, 122, 124, and 183

D e p t o f C S E , M B I T S Page 7

 Total head moves: (53-37) + (37-14) + (14-0) + (65-0) +

(67-65) + (98-67) + (122-98) + (124-122) + (183-124) =

236 cylinders.

 If a request arrives in the queue just in front of the head, it

will be serviced almost immediately; a request arriving just

behind the head will have to wait until the arm moves to

the end of the disk, reverses direction, and comes back.

 Assuming a uniform distribution of requests for cylinders,

consider the density of requests when the head reaches one

end and reverses direction. At this point, relatively few

requests are immediately in front of the head, since these

cylinders have recently been serviced.

D e p t o f C S E , M B I T S Page 8

 The heaviest density of requests is at the other end of the

disk. These requests have also waited the longest, so why

not go there first? That is the idea of the next algorithm.

C-SCAN Scheduling

 Circular SCAN (C-SCAN) scheduling is a variant of

SCAN designed to provide a more uniform wait time.

 Like SCAN, C-SCAN moves the head from one end of the

disk to the other, servicing requests along the way.

 When the head reaches the other end, however, it

immediately returns to the beginning of the disk without

servicing any requests on the return trip.

 The C-SCAN scheduling algorithm essentially treats the

cylinders as a circular list that wraps around from the final

cylinder to the first one.

 In our example, assume that the head movement was in

upward direction,

D e p t o f C S E , M B I T S Page 9

 It gives more importance to the average waiting time

than the number of head moves.

 Total head moves include a swing from 199 to 0 also.

 (Home work: Assume that the head movement is in

downward direction. Find the total head moves in C-

SCAN)

LOOK and C-LOOK Scheduling

 Both SCAN and C-SCAN move the disk arm across the

full width of the disk.

D e p t o f C S E , M B I T S Page 10

 Practically, the arm goes only as far as the final request in

each direction. Then, it reverses direction immediately,

without going all the way to the end of the disk.

 Versions of SCAN and C-SCAN that follow this pattern

are called LOOK and C-LOOK scheduling, because they

look for a request before continuing to move in a given

direction

 (Home work: Assume that the head movement is in

downward direction. Find the total head moves in LOOK

and C-LOOK)

D e p t o f C S E , M B I T S Page 11

Selection of a Disk-Scheduling Algorithm

 SSTF is common and has a natural appeal because it

increases performance over FCFS.

 SCAN and C-SCAN performance depends heavily on the

number and types of requests.

 Suppose that the queue usually has just one outstanding

request. Then, all scheduling algorithms behave the same.

 Requests for disk service can be greatly influenced by the

file-allocation method.

 A program reading a contiguously allocated file will

generate several requests that are close together on the

disk, resulting in limited head movement. A linked or

indexed file, in contrast, may include blocks that are

widely scattered on the disk, resulting in greater head

movement.

 The location of directories and index blocks is also

important. Suppose that a directory entry is on the first

cylinder and a file’s data are on the final cylinder. In this

case, the disk head has to move the entire width of the disk.

 Caching the directories and index blocks in main memory

can also help to reduce disk-arm movement.

 Because of these complexities, the disk-scheduling

algorithm should be written as a separate module of

OS, so that it can be replaced with a different algorithm

if necessary.

D e p t o f C S E , M B I T S Page 12

 Either SSTF or LOOK is a reasonable choice for the

default algorithm.

DISK FORMATTING

 A new magnetic disk is a blank slate

 Before a disk can store data, it must be divided into sectors

that the disk controller can read and write. This process is

called low level formatting or physical formatting

 Low-level formatting fills the disk with a special data

structure for each sector.

 The data structure for a sector typically consists of a

header, a data area (usually 512 bytes), and a trailer.

 The header and trailer contain information used by the disk

controller, such as a sector number and an Error

Correcting Code (ECC)

 When the controller writes a sector of data during normal

I/O, the ECC is updated with a value calculated from all

the bytes in the data area.

 When the sector is read, the ECC is recalculated and

compared with the stored value. If the stored and

calculated numbers are different, this mismatch indicates

that the data area of the sector has become corrupted and

that the disk sector may be bad (bad sector)

 The ECC is an error-correcting code because it contains

enough information, if only a few bits of data have been

corrupted, to enable the controller to identify which bits

D e p t o f C S E , M B I T S Page 13

have changed and calculate what their correct values

should be. It then reports a recoverable soft error

 The controller automatically does the ECC processing

whenever a sector is read or written.

 Most hard disks are low-level-formatted at the factory as a

part of the manufacturing process. This formatting

enables the manufacturer to test the disk and to ensure

defect-free sectors on the disk.

 The data are is normally 512 bytes. It may be of 256 or

1024 bytes also.

 Before using a physically formatted disk, the OS does two

more steps

 The first step is to partition the disk into one or more

groups of cylinders. The operating system can treat each

partition as though it were a separate disk.

 The second step is logical formatting or creation of a file

system.

 OS stores the initial file-system data structures onto the

disk as empty folders

 To increase efficiency, most file systems group blocks

together into larger chunks called clusters

 Some OS give special programs the ability to use a disk

partition as a large sequential array of logical blocks,

without any file-system data structures. This array is

sometimes called the raw disk, and I/O to this array is

termed raw I/O.

